- So this was on another site and I was trying to set this up. The OP said that the aimbot kept locking onto his character and he couldnt fix it. I decided to just remove the aimbot all together and only use the glow and i was in the middle of installing everything when i realized that 1. import cv2 is a library which is exclusive to python 2.7 and 2. the code is in python 2.7 format(you can tell by the fact that there is no parenthesis around the variables). Now i would just go and install tensorflow, however tensorflow is no longer supported for python 2.7 and is only python 3.5 and 3.6. If anyone can either find a version of tensorflow for python 2.7, or cv2 for python 3.5(in which case i will revise the code to be updated to python 3) then this will be a undetectable cheat as all it does is record the frame screens and find people
Happy hacking!
- # USAGE
- # python real_time_object_detection.py --prototxt MobileNetSSD_deploy.prototxt.txt --model MobileNetSSD_deploy.caffemodel
- # import the necessary packages
- import win32api
- import keyboard as keyboard
- import pygame as pygame
- import pythoncom
- import win32con
- from PIL import ImageGrab
- from imutils.video import VideoStream
- from imutils.video import FPS
- import numpy as np
- import argparse
- import imutils
- import time
- import cv2
- import pyautogui
- # construct the argument parse and parse the arguments
- from keyboard._mouse_event import RIGHT
- ap = argparse.ArgumentParser()
- ap.add_argument("-p", "--prototxt", required=False,
- help="path to Caffe 'deploy' prototxt file")
- ap.add_argument("-m", "--model", required=False,
- help="path to Caffe pre-trained model")
- ap.add_argument("-c", "--confidence", type=float, default=0.6,
- help="minimum probability to filter weak detections")
- args = vars(ap.parse_args())
- prott1 = 'C:\Users\Saehi\PycharmProjects/testing\MobileNetSSD_deploy.prototxt.txt'
- prott2 = 'C:\Users\Saehi\PycharmProjects/testing\MobileNetSSD_deploy.caffemodel'
- # initialize the list of class labels MobileNet SSD was trained to
- # detect, then generate a set of bounding box colors for each class
- CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
- "bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
- "dog", "horse", "motorbike", "person", "pottedplant", "sheep",
- "sofa", "train", "tvmonitor"]
- COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
- # load our serialized model from disk
- print("[INFO] loading model...")
- net = cv2.dnn.readNetFromCaffe(prott1, prott2)
- # initialize the video stream, allow the cammera sensor to warmup,
- # and initialize the FPS counter
- print("[INFO] starting video stream...")
- #vs = VideoStream(src=0).start()
- #time.sleep(2.0)
- #fps = FPS().start()
- # loop over the frames from the video stream
- HSX = 100;
- LSX = 1000;
- HSY = 100;
- LSY = 1000;
- HEX = 100;
- LEX = 1000;
- HEY = 100;
- LEY = 1000;
- while True:
- # grab the frame from the threaded video stream and resize it
- # to have a maximum width of 400 pixels
- frame = np.array(ImageGrab.grab(bbox=(0, 40, 1820, 1240)))
- # frame = imutils.resize(frame, width=400)
- # grab the frame dimensions and convert it to a blob
- (h, w) = frame.shape[:2]
- blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)),
- 0.007843, (300, 300), 127.5)
- # pass the blob through the network and obtain the detections and
- # predictions
- net.setInput(blob)
- detections = net.forward()
- # loop over the detections
- for i in np.arange(0, detections.shape[2]):
- # extract the confidence (i.e., probability) associated with
- # the prediction
- confidence = detections[0, 0, i, 2]
- # filter out weak detections by ensuring the `confidence` is
- # greater than the minimum confidence
- if confidence > args["confidence"]:
- # extract the index of the class label from the
- # `detections`, then compute the (x, y)-coordinates of
- # the bounding box for the object
- idx = int(detections[0, 0, i, 1])
- box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
- (startX, startY, endX, endY) = box.astype("int")
- # draw the prediction on the frame
- label = "{}: {:.2f}%".format(CLASSES[idx],
- confidence * 100)
- cv2.rectangle(frame, (startX, startY), (endX, endY),
- COLORS[idx], 2)
- y = startY - 15 if startY - 15 > 15 else startY + 15
- cv2.putText(frame, label, (startX, y),
- cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
- if 'person' in label:
- pygame.init()
- pygame.event.get()
- if pygame.mouse.get_pressed():
- print 'pressing'
- #tried to detect my character's offset and add the best way to exclude it, failed most tests.
- if startX > 369 & startX < 1402 & startY > -1 & startY < 725 & endX > 339 & endX < 1805 & endY > 806 & endY < 1017:
- print 'found myself'
- else:
- #print 'found somebody else'
- nosum = int(round(startX * 1)) + int(round(startX * 0.06))
- nosum2 = int(round(y * 1)) + int(round(y * 0.7))
- halfX = (endX - startX) / 2
- halfY = (endY - startY) / 2
- finalX = startX + halfX
- finalY = startY + halfY
- pyautogui.moveTo(finalX, finalY)
- #win32api.SetCursorPos((finalX, finalY))
- win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN, finalX, finalY, 0, 0)
- win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP, finalX, finalY, 0, 0)
- #print 'Pressed L'
- if 'HSX' not in locals():
- HSX = startX
- if 'LSX' not in locals():
- LSX = startX
- if 'HSY' not in locals():
- HSY = startY
- if 'LSY' not in locals():
- LSY = startY
- if 'HEX' not in locals():
- HEX = endX
- if 'LEX' not in locals():
- LEX = endX
- if 'HEY' not in locals():
- HEY = endY
- if 'LEY' not in locals():
- LEY = endY
- if startX > HSX:
- HSX = startX
- if startX < LSX:
- LSX = startX
- if startY > HSY:
- HSY = startY
- if startY < LSY:
- LSY = startY
- if endX > HEX:
- HEX = endX
- if endX < LEX:
- LEX = endX
- if endY > HEY:
- HEY = endY
- if endY < LEY:
- LEY = endY
- print 'HStartX: ' + str(HSX)
- print 'LStartX: ' + str(LSX)
- print 'HStartY: ' + str(HSY)
- print 'LStartY: ' + str(LSY)
- print 'HendX: ' + str(HEX)
- print 'LendX: ' + str(LEX)
- print 'HendY: ' + str(HEY)
- print 'LendY: ' + str(LEY)
- #print args["confidence"]
- # click(10,10)
- # show the output frame
- cv2.imshow("Frame", frame)
- key = cv2.waitKey(1) & 0xFF
- # if the `q` key was pressed, break from the loop
- if key == ord("q"):
- break
- # update the FPS counter
- # stop the timer and display FPS information
- # do a bit of cleanup
- cv2.destroyAllWindows()